Quick Overview: IMPACT of SEA LEVEL RISE ON SEAWALLS AND INFRASTRUCTURE

Tidelands Management Committee November 16, 2011

Bob Stein, Assistant City Engineer
Public Works Department

Projections of Mean Sea Level and Extreme Tide Heights Through Year 2100

Biggest-ever Jump Seen in Global Warming Gases

November 4, 2011, 7:19 p.m. Associated Press

Total emissions jump 6% between 2009 and 2010 — beyond amounts projected in a worst-case scenario.

Topography

Seawall Construction

2021-2035

- a. Construct new seawalls at 10' MLLW.
- b. If needed, construct 6-inch cap on existing seawalls as an interim measure.

2050-2060

Extend new seawalls if necessary to 13 or 14 feet MLLW.

New Seawall Option Steel Sheet Pile Bulkhead

(No tiebacks)

Public Seawalls

Rough Estimates of Seawall Lengths

- Total Seawall Length 17-18 miles approx.
- Existing Public Seawalls 4.5 miles approx.
- Existing Private Seawalls 13 miles approx.

Back-of-Envelop Costs

- Interim 6" Seawall Extensions
- Construct New Seawalls (10' MLLW)
- Raise Seawalls to 14' MLLW

PUBLIC SEAWALLS: \$110-120 million approx.

PRIVATE SEAWALLS: \$290-350 million approx.

Rising Groundwater

- First Floor Elevations: 6.2 to 11.6 feet (NAVD88)
- 2050 Groundwater elevation at High Water estimated at 6.1 feet
- 2100 Groundwater Elevation at High Water estimated at 9.3 feet

CONSIDERATION: Finish Floor Elevation of 10' MLLW

Infrastructure

Infrastructure Planning

Storm System Modifications

- Peripheral drains along boardwalk
- 2. Storm water capture and pump system

Next Steps

- Balboa Island concept planning
- 2. Seawall pre-engineering Possibility of limited Federal or State Grants
- 3. Define funding options, e.g. Assessment District Formation

Supplementary slides follow

Seawall Construction Cost Estimates (Concept-Level)

MITIGATION COMPONENT	Unit Price (\$/LF) 1	CONCEPTUAL COST 2			
Interim Seawall Height Extension					
Alt. 1: New Seawall Cap	\$625 - \$725	\$8.25 - \$9.57 million			
Alt. 2: Existing Seawall Cap Extension					
Option 1: Mechanical Extension	\$250 - \$300	\$3.30 - \$3.63 million			
Option 2: Polypropylene Sandbags	\$170 - \$190	\$2.26 - \$2.52 million			
Option 3: Geotextile Bags/Tubes	\$130 - \$160	\$1.72 - \$2.12 million			
New Seawall					
Option 1: Steel H-Piles w/ Conc. Panels	\$3,800 - \$4,000	\$50.20 - \$52.80 million			
Option 2: Steel Sheet Piles	\$4,100 - \$4,300	\$54.10 - \$56.80 million			
Subsequent Seawall Extension: 3 – 4 feet (When/If Required)	\$400 - \$500	\$5.30 - \$6.60 million			
Ferry Landing and Bridges					
Ferry Boat Landing and Fuel Dock Retrofit (All 3 Options)		\$3.50 -\$5.00 million			
Bridge Retrofit (3 bridges)	\$250,000 - \$350,000 per bridge	\$0.75 - \$1.05 million			
Total Estimated Program Cost ³		\$61.47 - \$79.02 million			

Comparison of Different Tidal Datums

MLLW = MEAN LOWER LOW WATER

(RELATIVE DATUM BASED ON NTDE DATA)

NAVD88 = NORTH AMERICAN VERTICAL DATUM 1988

(GEODETIC VERTICAL DATUM USING A SINGLE FIXED REFERENCE POINT)

Seawall Condition

- Seawall Age: 73-82 years
- Overall Condition: Holding together well with widespread cracking and some concrete spalling and evidence of corroding rebar.
- Estimated Useful Life: 10-25 years

Sea Level and Annual Maximum Tide Height Projections Through Year 2100

YEAR	Mean Sea Level (FT, NAVD88)	10% TIDE HEIGHT (FT, NAVD88)	1% TIDE HEIGHT (FT, NAVD88)	PROJECTED SEA LEVEL RISE (FT)*
2010	2.65	7.41	7.71	-
2025	3.05	7.81	8.11	0.40
2050	4.03	8.79	9.09	1.38
2100	7.25	12.01	12.31	4.60

^{*} equals change in mean sea level from Year 2010.

Sea Level Rise Projections

Flood Scenario 6

